


## Motion, forces and energy

### P1.5 Forces

#### Effects of Forces

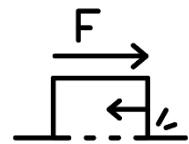
- Forces can change the size, shape, or motion of an object.  
E.g. Stretching a spring changes its shape, pushing a box changes its motion, kicking a ball changes its speed and direction.



#### Motion and force

- If there's no resultant force, an object will:
  - Stay at rest (stay still, not move) if it was not moving. E.g. a book on a table stays still
  - Move at a constant speed in a straight line if it was already moving.
  - If there is a resultant force, the object accelerates in the same direction as the force. E.g. car accelerates when the engine pushes it forward.
  - Motion only changes if there is a resultant force.**

#### Calculating force


- Equation:  $F = ma$ , where  $F$  = force in newtons (N),  $m$  = mass in kilograms (kg) and  $a$  = acceleration in  $\text{m/s}^2$ 
  - A 2 kg ball accelerates at  $3 \text{ m/s}^2$ . Find the force.  $F = ma$   $F = 2 \times 3 = 6 \text{ N}$
  - A 5 N force accelerates a box at  $2 \text{ m/s}^2$ . Find the mass.  $m = F/a = 5 / 2 = 2.5 \text{ kg}$

#### Resultant force

- When two or more forces act along the same straight line:
  - Same direction: add them.  $5\text{N} \Rightarrow + 4\text{N} \Rightarrow = 9\text{N} \Rightarrow$
  - Opposite directions: subtract the smaller from the larger.  $5\text{N} \Rightarrow + 4\text{N} \Leftarrow = 1\text{N} \Rightarrow$

#### Friction and drag

- Friction** always opposes motion. Friction is the force that *resists* motion when two surfaces touch. It produces heat. E.g. Brakes on a bike slow it down, rubbing hands together produces warmth.
- Drag** is friction in fluids (liquids or gases).
  - Liquid: water resistance slows boats.
  - Gas: air resistance slows falling objects or moving cars.

